CITY OF DURANGO 2022 Drinking Water # Consumer Confidence Report for Calendar Year 2021 Public Water System ID CO 0134150 Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca. We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact City of Durango Water Treatment Staff at 970-375-4887 with any questions or for public participation opportunities that may affect water quality. ### **General Information about Drinking Water** All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791, or by visiting epa.gov/ground-water-and-drinking-water. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems. - **Radioactive contaminants**, that can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. # Our Water Source(s) | Source | Water Type | |----------------------|---------------| | Florida River | Surface Water | | Animas River | Surface Water | | City Reservoir No. 1 | Surface Water | | Terminal Reservoir | Surface Water | Potential sources of contamination in our source water area come from: EPA Superfund Sites, EPA Hazardous Waste Generators, EPA Chemical Inventory/Storage Sites, Permitted Wastewater Discharge Sites, Aboveground, Underground and Leaking Storage Tank Sites, Solid Waste Sites, Existing/Abandoned Mine Sites, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Pasture / Hay, Deciduous Forest, Evergreen Forest, Mixed Forest, Septic Systems, Oil / Gas Wells, Road Miles. # Source Water Assessment and Protection (SWAP) The Colorado Department of Public Health and Environment has provided a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit http://wqcdcompliance.com/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 134150, DURANGO CITY OF, or by contacting City of Durango Water Treatment staff at 970-375-4887. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could-occur. It does not mean that the contamination has or will-occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Please contact City of Durango Water Treatment staff at 970-375-4887 to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Consumer Confidence Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day. #### **Terms and Abbreviations** The following definitions will help you understand the terms and abbreviations used in this report: - Action Level (AL) The concentration of a contaminant, which if exceeded, triggers treatment or other requirements which a water system must comply with. - Alkalinity The capacity of water's ability to neutralize acid based on its dissolved mineral content. - BDL (Below detectable limit or level) Due to limitations of chemical analysis procedures, some small concentrations cannot be precisely measured. These concentrations are said to be below the detectable limit. - **EPTD** (Entry Point to Distribution) This is the point where the water leaves the Water Treatment Plant and enters the Distribution System. It is the site for many of our yearly required samples. - Gross Alpha This is the gross alpha particle activity compliance value. It includes radium-226, but excludes radon-222 and uranium. - *Hardness* A measurement of dissolved minerals (primarily calcium and magnesium) in water. - Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. - Maximum Contaminant Level Goal (MCLG) The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. - Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. - Microscopic Particulate Analysis (MPA) An analysis of surface water organisms and indicators in water. This analysis can be used to determine performance of a surface water treatment plant or to determine the existence of surface water influence on a ground water well. - *Micrograms per liter* (μg/L) one microgram per liter corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Same as *ppb* or parts per billion. - *Milligrams per liter (mg/L)* one milligram per liter corresponds to one minute in two years or a single penny in \$10,000. Same as *ppm* or parts per million. - Minimum Reporting Limit (MRL) Laboratories lowest reportable value, levels below are reported as Below Detection Limit (BDL). - ▶ Nephelometric Turbidity Unit (NTU) Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. - **Picocuries per liter (pCi/L)** Picocuries per liter is a measure of the radioactivity in water. - **Running Annual Average (RAA)** − An average of monitoring results for the previous 12 calendar months. - Treatment Technique (TT) A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. - Violation A failure to meet a Colorado Primary Drinking Water Regulation. #### **Detected Contaminants** The City of Durango routinely monitors for contaminants in your drinking water according to Federal and State laws. The following tables show all detections found in the period of January 1st to December 31st, 2021 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. The "Range" column in the tables below will show a single value for those contaminants that were sampled only once. Violations and Formal Enforcement Actions, if any, are reported in the last section of this report. Note: Only detected contaminants appear in this report. If no tables appear in this section, that means that City of Durango did not detect any contaminants in the last round of monitoring. "Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Our monitoring indicates the presence of these organisms in our source water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. *Cryptosporidium* must be ingested to cause disease, and it may be spread through means other than drinking water." | Microorganism Contaminants Sampled in the Source Water | | | | | | | | | |---|---|----|----|---------------------------------|--|--|--|--| | Source Water Microorganism Collection Date Number of Positives Sample Size Typical Source | | | | | | | | | | CRYPTOSPORIDIUM | UM 2016 - 2018 0 24 Infected human and animal fec | | | | | | | | | E. COLI | 2016 - 2018 | 11 | 24 | Infected human and animal feces | | | | | | | Inorganic Contaminants Sampled at the Entry Point to the Distribution System | | | | | | | | | | | |------------|--|------------------|---|------|-----|-----|--|--|--|--|--| | Inorganics | Collection
Date | Result | sult Range Unit MCL MCLG Typical Source | | | | | | | | | | BARIUM | 5/27/2021 | 0.0538 | 0.0538 | mg/L | 2.0 | 2.0 | Discharge of drilling wastes, discharge from metal refineries, erosion of natural deposits. | | | | | | FLUORIDE | 2021 | 0.706
average | 0.451 – 0.793 | mg/L | 4.0 | 4.0 | Erosion of natural deposits, water additive which promotes strong teeth, discharge from fertilizer and aluminum factories. | | | | | | NITRATE | 5/27/2021 | 0.042 | 0.042 | mg/L | 10 | 10 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits | | | | | | | Disinfectant Residual Sampled in the Distribution System | | | | | | | | | | |--------------|--|--|--|--|--|--|--|--|--|--| | Disinfectant | Disinfectant Year Average Range Units MRDL MRDLG Source | | | | | | | | | | | CHLORINE | CHLORINE 2021 0.725 0.20 – 1.37 mg/L 4.0 4.0 Water additive used to control microbes | | | | | | | | | | | Disinfection Byproducts Sampled in the Distribution System | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Disinfection Byproducts Year Average Range Highest RAA Unit MCL Typical Source | | | | | | | | | | TOTAL HALOACETIC ACIDS (HAA5) 2021 16.83 5.40 – 26.30 19.34 μg/L 60.0 Byproduct of drinking water chlorination | | | | | | | | | | TOTAL TRIHALOMETHANES (TTHMs) 2021 35.62 2.88 – 59.40 36.79 µg/L 80.0 Byproduct of drinking water chlorination | | | | | | | | | | Removal Ratio of Disinfection Byproduct Precursors | | | | | | | | | |--|------|------|------------|------|----|--------------------------------------|--|--| | Disinfection Byproducts Precursors Year Average Range TT Minimum TT Violation Typical Sources | | | | | | | | | | TOTAL ORGANIC
CARBON
Removal Ratio | 2021 | 1.21 | 1.0 – 1.68 | 1.00 | No | Naturally present in the environment | | | | Lead and Copper Sampled in the Distribution System | | | | | | | | | | |--|------|--|--|--|--|--|--|--|--| | Contaminant Year 90 th Percentile Unit AL Typical Source | | | | | | | | | | | COPPER | 2021 | Corrosion of household plumbing systems, erosion of natural deposits, leaching from wood preservatives | | | | | | | | | LEAD 2021 0.0017 mg/L 0.015 Corrosion of household plumbing system erosion of natural deposits | | | | | | | | | | | Radionuclides Sampled at the Entry Point to the Distribution System | | | | | | | | |--|-----------|-----|-----|-------|---|---|-----------------------------| | Radionuclides Collection Date Highest Value Range Unit MCL MCLG Typical Source | | | | | | | | | RADIUM,
COMBINED (226, 228) | 5/26/2020 | 2.1 | 2.1 | pCi/L | 5 | 0 | Erosion of natural deposits | | GROSS ALPHA 5/26/2020 0.9 0.9 pCi/L 15 0 Erosion of natural deposits | | | | | | | | | Summary of Turbidity Sampled at the Entry Point to the Distribution System | | | | | | | | | |--|--------------------------|---|---|-----------------------|--|--|--|--| | Turbidity | Sample Date | Result | TT Requirement | Typical Source | | | | | | | 5/18/2021 | Highest single measurement: 0.070
NTU | Maximum 1.0 NTU for any single measurement | a ii aa | | | | | | TURBIDITY | Continuous
Monitoring | 100% of samples meeting TT requirement for our technology | In any month, at least 95% of samples must be less than 0.3 NTU | Soil runoff | | | | | | | Microorganism Contaminants Sampled in the Distribution System | | | | | | | | |-------------------|--|---|----|---|--------------------------------------|--|--|--| | Microbiolog ical | Result MCL Violation MCLG Typical Source | | | | | | | | | TOTAL
COLIFORM | 40 samples per month,
one sample in March &
one sample in August
returned as positive | MCL: Systems that collect 40 samples per month – No more than 2 positive results per month | No | 0 | Naturally present in the environment | | | | | E. COLI | 0 Positive | MCL: A routine sample and a
repeat sample are Total Coliform
Positive, and one of these is also
Fecal Coliform/E.coli Positive | No | 0 | Human and animal fecal waste | | | | #### **Secondary Contaminants** Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor or color) in drinking water. EPA recommends these standards but does not require water systems to comply. | Secondary Contaminants/ Other Monitoring | Collection Date | Result | Range | Unit | Secondary Standard | |---|------------------------|-----------|-------------|------------|--------------------| | ALKALINITY | 2021 | 97.9 RAA | 63.6 - 138 | mg/L | NO MCL | | TOTAL HARDNESS (includes calcium and magnesium) | 2021 | 117.6 RAA | 67.6 – 168 | mg/L | NO MCL | | TOTAL HARDNESS (includes calcium and magnesium) | 2021 | 6.87 RAA | 3.95 – 9.81 | grains/gal | NO MCL | | SODIUM | 5/27/2021 | 5.47 | 5.47 | mg/L | NO MCL | # **Unregulated Contaminants***** EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below. | UCMR4 Contaminants | Year | Average | Range | Unit | MRL | Typical Source | |--|------|---------|--------------|------|-------|--| | MANGANESE | 2019 | 2.08 | 0.54 - 5.9 | μg/L | 0.4 | Erosion of natural deposits | | BROMIDE | 2019 | 0.008 | 0.006 - 0.01 | mg/L | 0.005 | Erosion of natural deposits | | TOTAL ORGANIC CARBON | 2019 | 4.47 | 2.87 – 6.06 | mg/L | 0.5 | Naturally present in the environment | | HALOACETIC ACIDS (HAA5)
GROUP | 2019 | 21.3 | 7.0 – 37.4 | μg/L | N/A | Byproduct of drinking water chlorination | | BROMINATED HALOACETIC
ACIDS 6 GROUP | 2019 | 2.5 | 0.3 - 5.6 | μg/L | N/A | Byproduct of drinking water chlorination | | HALOACETIC ACIDS (HAA9)
GROUP | 2019 | 23.8 | 9.2 – 43.0 | μg/L | N/A | Byproduct of drinking water chlorination | ^{***}More information about the contaminants that were included in UCMR monitoring can be found at: drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR. Learn more about the EPA UCMR at: epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/ground-water-and-drinking-water. #### **Lead in Drinking Water** If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested. Additional information is available at epa.gov/safewater/lead or from the Safe Drinking Water Hotline 800-426-4791. # **Protecting Our Drinking Water** In an effort to ensure public health, the City of Durango works to protect its water system from the backflow of water from consumers' premises. Backflow from a property may contain potentially hazardous chemicals. For more information contact the Cross Connection Control Program at 970-375-4882. ### A Note about Fluoride The City of Durango participates in the State of Colorado Water Fluoridation Program. The Water Treatment Plant adjusts the level of fluoride to achieve 0.7mg/L in the water delivered to the public as the optimum amount for oral health. #### **Bacteriological Quality** The City of Durango maintains a minimum of 0.2mg/L of free chlorine residual throughout the entire distribution system. We perform weekly sampling of our water mains to ensure public health and quality of the water. # 2019 Violations, Significant Deficiencies, and Formal Enforcement Actions #### None Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. **Beautiful Double Rainbow over Terminal Reservoir**